

Integrated Medical Model

Potential Medical Condition

Likelihood of occurrence, probable severity of occurrence, and optimization of treatment and resources.

- The Integrated Medical Model (IMM) is a tool for quantifying the probability and consequences of medical risks
- Integrate best evidence in a quantifiable assessment of risk
- Identify medical resources such as skills, equipment, and supplies necessary to optimize mitigation strategies.

GRC Quantifying Approach and Bone Fracture Risk

- Observed Early On In the Process
 - Risk assessment with some medical conditions is confounded by the rigors of space travel
 - Bone Loss, Renal Stones, etc.
- GRC: Physiological modeling experience makes us uniquely qualified
 - Develop approaches quantifying the probability of perceived risks where only minimal space-flight data exists.
- First Focus: Bone fracture in astronauts during exploration missions
 - Measure of risk based on astronaut bone health and mission. parameters
- Outcome
 - A set of mission specific probability density functions for fracture at a specific skeletal locations
 - Relate load conditions to the predictions of the bone's structural strength at the time of loading
 - Combine with clinical data on fracture occurrence and an understanding of the frequency of loading
 - Produce a quantitative measure of fracture risk
 - Designed to provide input for the ExMC-IMM and the Human Health Risk Assessment Team (HHRAT) PRA analysis

What is a Bone fracture?

Simple Definition:

A Bone Fracture is a structural failure of the bone in response to an applied load

Risk Definition:

Given that astronauts could experience significant skeletal loading during planetary activities, particularly in areas where bone is compromised due to BMD reduction from low-g exposure, there is the possibility of bone fracture leading to astronaut impairment or significant mission impact

Modeling Fracture Potential For Exploration **Missions**

Biomechanics and Loading

Pre-Flight Health and Bone Loss in **Space Flight**

Characteristics of **Bone Strength**

= Estimate of Fracture Probability

- Simulation Model Approach
 - Based on a Monte Carlo sampling of the data space
 - Commercial Simulation Engine: Crystal Ball
 - Integrates best estimate biomedical engineering, clinical and space data
 - Provides for tracking the uncertainty (aletory, epistemic) bounding our output
 - Predicated on estimating a loading event will exceed current bone strength
 - Earth, Moon and Mars Locations

Fracture Metric: Fracture Risk Index also call the "Factor of Risk"

FRI = Applied Load Bone Strength

Hayes WC , Myers ER. Biomechanical considerations of hip and spine fractures in osteoporotic bone. Instr Course Lect 1997; 46: 431-38

Davidson et al. Prediction of distal radius fracture in children, using a biomechanical impact model and case-control data on playground free falls JBMech 39 (2006) 503–509

- FRI used to track fracture events in several studies
- FRI Converted to Probability of Fracture using Logistic Regression curves

Loading Conditions

Stance Walking Ladder/Stair **Ascent/Decent**

"Drop Landing"

Lateral/Posterolateral **Fall Impacting the Hip** Or **Abnormal Lifting**

Calculating Loading in Reduced Gravity Environment

EVA Suit Mass & Padding

Active Response

Resultant Skeletal Load

Determine Load Additive or Attenuation Factors

Scale Load to Gravity Level Using Appropriate Methods

$$F = \frac{m\sqrt{2gh}}{\Delta t}$$

$$F_{m} = F_{e} \frac{m_{m}}{m_{e}} \cdot \left(\frac{\Delta t_{m}}{\Delta t_{e}}\right)^{-1} \cdot \left(\frac{g_{m}}{g_{e}}\right)^{\frac{1}{2}} \cdot \left(\frac{h_{m}}{h_{e}}\right)$$

Uses the change in momentum Includes additional mass

Estimate of Load w/ 1g Biomechanics

Loading Event Occurs
From Specified
Activity or Incident

Represents a perceived loading state during on surface activities

Calculating Bone Ultimate Structural Strength

Posterolaterial fall: UL Reduced ~0.8% per Degree

Ultimate Structural Load **Capacity for Loading Conditions**

Apply UL attenuation for load direction

Use BMD correlations to **Estimate UL**

Based on appropriate ex vivo test data

State of Bone at 1g **Pre-Flight DEXA-BMD**

NHANES DATA - Represents Pre-Flight Bone Health, FFD Standards And Reference Max BMD Condition

Tying It All Together: Falls to the Side Impacting **Proximal Femur**

Results

Scenarios and Simulations

- Model Results Averaged Over Reference Mission Simulations
 - Lunar Short: 3 day transient, 8 day surface, 3 day return
 - Lunar Long: 5 day transient, 170 day surface, 5 day return
 - Mars Short: 162 transient, 40 surface, 163 return
 - Mars Long: 189 transient, 540 surface, 189 return
- Male or Female Crew Members
 - Reference Data obtained from LSAH
- **EVA or IVA**
 - With/Without suit mass and load attenuation models
- For the presented results
 - No attenuation of bone loss due to reduced gravity
 - Modified Linear Loss rates based on LeBlanc
 - Produced the highest values of FRI compared to other loss models
- Focus on
 - Lateral/Posteriolateral fall models
 - Male astronaut on EVA
 - Other data is available for Female, IVA, and other mission scenarios

"Smell" Test Validation

Pre-flight estimate of FRI for Unhindered Posteriolateral Fall i.e. a fall to the side and slightly backward Male in 1g with ~1m fall heights

Exploration Mission: Average FRI Estimates Male on EVA

Mars: Long Lunar: Long

	Lateral Fall		2m Drop Landing		Normal Activity	
	FRI	Cert. >1	FRI	Cert >1	FRI	Cert. >1
L:S	0.09(.07)	<1E-4	0.21(.07)	<1E-4	0.16(.03)	<1E-4
L:L	0.10(.08)	<1E-4	0.22(.07)	<1E-4	0.17(.03)	<1E-4
M:S	0.23(.16)	4.6E-3	0.61(.22)	5.5E-2	0.40(.08)	<1E-4
M:L	0.28(.20)	1.3E-2	0.67(.26)	1.0E-1	0.44(.10)	1E-4

^{*} Note Lateral/Posteriolateral Fall heights range from .25m to ~1m

Probability of Fracture Male on EVA

Mission	Fracture Prob	Std	5th Percentile	95th Percentile
Lunar: Short	1.50E-4	1.15E-3	3.30E-07	5.36E-04
Lunar: Long	1.94E-4	1.54E-3	3.47E-07	6.15E-04
Mars: Short	1.44E-3	7.66E-3	1.15E-06	4.85E-03
Mars: Long	2.47E-3	9.95E-3	1.68E-06	1.15E-02

Model Sensitivity

Lunar: Long Mars: Long

- The suit attenuation characteristics and the impulse scaling factors produce the most sensitivity – Represents our Epistemic Uncertainty
- Interesting to note that
 - Successful reaction to the fall is the next most driving factor
 - Bone loss rates are not as significant for lunar missions
 - Reference BMD produces more sensitivity to the calculation than rate of bone loss in both scenarios

Primary Limitations

- Validation with appropriate analog populations
 - In process
- Loading limited to vulnerable areas
- Loading level and type limited in scope
- Only DEXA-BMD used to define material strength
 - Model assumes equivalence of ex vivo and in vivo bone strength
- Assumption of continued BMD loss on planetary surface has not been validated
- Assumption of bone loss plateau may not be representative of ultimate BMD levels
- Suit mass and attenuation characteristics need to be better quantified

Conclusion

- Provides One of the First Methods for Quantifying Fracture Risk
 - Includes models of loading as well as bone strength related to astronaut activity and health
 - Results agree with more targeted methods used in pre-flight evaluation
 - Illustrates GRC's unique capabilities can be used to address estimates of medical risks
- Integrative approach accounting for extenuating factors
 - Equipment EVA suit parameters
 - Vehicle Egress ladder and storage
 - Bone Health Relating loss to bone strength decrement
 - Training and Operations Frequency of loading events
- Can be easily used to generate "what if" scenarios
 - What if reduced gravity is osteo-protective?
 - What if the FFD is reduced to t-score of -1.25?
- Can easily incorporate new data as it becomes available
 - Modular and follows object oriented programming practices
- Currents efforts
 - Proximal Femur (Completed Documentation by June 2007)
 - Lumbar Spine Fractures (June 2007)
 - Radial Arm Fractures (August 2007)

Continuing Work With IMM, HHRAT

- For Bone:
 - Actual Suit Characteristics (attenuation, etc.)**
 - Effects of Exercise Stimulus and Planetary Activities on Bone Health
 - Clinical Measures and Bone Loss **Markers**
- **New Topic Areas**
 - Renal Stones Occurrence Module
 - Behavioral Health and Performance Module
 - Interactions between Risk Conditions for Existing Modules
 - Additional Modules
 - Consultation with program management office
 - Houston trip tomorrow
- Looking to expand
 - If interested let us know

Special Thanks for Their Guidance

- NASA
 - IMM Project Team
 - Doug Butler
 - Kieran Smart
 - ExMC Project Team
 - Bone Lab
 - Jean Sibonga
 - Members of the ESPS working group
 - HH Risk Assessment Team
 - John Charles
 - Michelle Edwards
 - HRP Management
- NSBRI Bone Loss Team
 - Peter Cavanagh
 - Tom Lang
 - Joyce Keyak
 - Ted Bateman
- And through these, many other helpful contacts